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Abstract

We present a system for interactive shape and appearance editing
of 3D point-sampled geometry. By generalizing conventional 2D
pixel editors, our system supports a great variety of different inter-
action techniques to alter shape and appearance of 3D point mod-
els, including cleaning, texturing, sculpting, carving, filtering, and
resampling. One key ingredient of our framework is a novel con-
cept for interactive point cloud parameterization allowing for dis-
tortion minimal and aliasing-free texture mapping. A second one is
a dynamic, adaptive resampling method which builds upon a con-
tinuous reconstruction of the model surface and its attributes.
These techniques allow us to transfer the full functionality of 2D
image editing operations to the irregular 3D point setting. Our sys-
tem reads, processes, and writes point-sampled models without
intermediate tesselation. It is intended to complement existing low
cost 3D scanners and point rendering pipelines for efficient 3D
content creation.

Keywords: 3D Content Creation, Point-Based Graphics, Surface
Painting, Surface Sculpting, Texture Mapping, Parameterization

1 INTRODUCTION

When 2D digital photography became instrumental, it immediately
created the need to efficiently edit and to interactively improve the
quality of digital images. Hence, considerable effort has been
devoted to the development of such systems, both for the private
and for the professional user of digital cameras. This conventional
photo editing software includes a variety of individual tools rang-
ing from simple artifact removal or paint brushes to highly special-

ized image effect filters. The most popular package is undoubtedly
Adobe’s Photoshop, providing a set of powerful tools for user
guided alteration of 2D image data. 

In recent years advances in 3D digital photography spawned
scanning systems that acquire both geometry and appearance of
real-world objects. A major application for such 3D range cameras
is for instance the ready creation of 3D internet content for e-com-
merce applications. However, the process of 3D model production
is often quite tedious and requires a variety of different techniques
including registration of raw scans, resampling, filtering, sculpt-
ing, or re-texturing. The early stages of processing of 3D photos
frequently produce 3D point clouds, which are most often con-
verted into triangle meshes for further modeling. In this paper we
present an interactive 3D photo editing system which is entirely
based on points. It takes an irregular point-sampled model as an
input, provides a set of tools to edit geometry and appearance of
the model, and produces a point-sampled object as an output. 

Conceptually, 2D photo editing systems are based on pixels as
the major image primitive. As a consequence, all editing tools
operate on subsets of image pixels, often making heavy use of
adjacency and parameterization. Despite the multilayered structure
of an image, the regular sampling lattice makes many pixel opera-
tions simple and efficient. Furthermore, pixel processing is mostly
carried out on color or transparency channels changing appearance
attributes of the image only. Geometry is typically less important.
If at all, range layers are manipulated by converting them into
intensity fields.

In this work we generalize 2D photo editing to make it amena-
ble to 3D photography. While existing 3D geometry-oriented mod-
eling, painting or sculpting systems are either based on
polynomials [Alias Wavefront 2001], triangle meshes [Agrawala
et al. 1995, Right Hemisphere 2001], implicits [Pedersen 1995,
Perry and Frisken 2001], or images [Oh et al. 2001], our approach
is completely different in spirit. It is purely founded on irregular
3D points as powerful and versatile 3D image primitives. By gen-
eralizing 2D image pixels towards 3D surface pixels (surfels
[Szeliski and Tonnesen 1992, Pfister et al. 2000]) we combine the
functionality of 3D geometry based sculpting with the simplicity
and effectiveness of 2D image based photo editing.

Figure 1: 3D content creation: Scanning of a physical model (left). Editing of the point-sampled object: Carving (middle), texturing (right).
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Point samples provide an abstraction of geometry and appear-
ance, since they discretize position and texture on the object sur-
face. However, as opposed to triangle primitives, they do not store
information about local surface connectivity. Unlike 2D image
pixels, the absence of local topology in combination with the irreg-
ularity of the sampling pattern poses great challenges to the design
of 3D photo editing tools. We found that the two key ingredients
for such tools are interactive parameterization and dynamic resa-
mpling. For instance, distortion minimal re-texturing or surface
carving both demand a flexible parameterization of the point
cloud. In addition, points discretize geometry and appearance
attributes at the same rate in object space. Thus, fine-grain surface
detail embossing of an existing object with a high resolution depth
map can lead to heavy aliasing and requires a dynamic adaptation
of the sampling rate.

In the following, we will present a set of methods to solve the
problems stated above and integrate them into a versatile system.
Specifically, our paper makes the following contributions:

Interactive parameterization (Section 3): By extending prior
work on triangle meshes [Levy 2001] we designed a novel method
for distortion minimal parameterization of point clouds. The algo-
rithm allows for constraints and enables users to interactively
adapt the parameterization to input changes. A multigrid approach
accomplishes robust and efficient computation. 

Dynamic resampling (Section 4): As a prerequisite, changes of
the sampling rate demand a continuous reconstruction of the
model surface and of its attributes. To this end, we introduce a
novel surface representation based on a parameterized scattered
data approximation. In addition, we propose a method which
dynamically adapts the number of samples to properly represent
fine geometric or appearance details. We combined our sampling
strategy with existing texture antialiasing techniques for point-
sampled geometry [Zwicker et al. 2001].

Editing framework (Section 5): Our system provides a unified
conceptual framework to edit 3D models. It supports a great vari-
ety of individual tools to alter the geometry and appearance of
irregular point-sampled geometry. The scope of possible opera-
tions goes well beyond the functionality of conventional 2D photo
editing systems. We implemented re-texturing, sculpting, emboss-
ing, and filtering, however, new effect filters can be added very
easily. Overall, our system combines the efficiency of 2D photo
editing with the functionality of 3D sculpting systems.

Pointshop 3D is not intended to be a point-based modeling sys-
tem. As such, editing of the surface geometry is confined to nor-
mal displacements and to moderate changes of the surface
structure only. It is rather designed to complement low cost scan-
ning devices [Eyetronics 2001] and point-based 3D viewers
[Rusinkiewicz and Levoy 2000, Pfister et al. 2000, Arius3D 2001],
yielding a powerful pipeline for efficient 3D content creation and
display. Pointshop 3D explores the usability of point primitives for
surface editing and constitutes an alternative to conventional
polygonal mesh or splines based approaches.

Since our algorithms are based on -nearest neighbor search,
input data with a substantial amount of noise or highly irregular
sampling distribution, e.g., as obtained from multiple merged
range scans, can lead to instabilities. In these cases, the raw scans
have to be resampled to a clean point cloud using standard meth-
ods [Curless and Levoy 1996], also allowing the computation of
accurate normals.

2 SYSTEM OVERVIEW

Our editing framework originates from the motivation to provide a
wide range of editing and processing techniques for point-sampled
3D surfaces, similar to those found in common photo editing tools
for 2D images. To give an overview of our system we will first
describe a typical photo editing operation on an abstract level.
Then we will explain how these concepts can be transferred to sur-
face editing, commenting on the fundamental differences between
images and surfaces. This will serve as a motivation for the tech-
niques and algorithms described in the following sections. We also
introduce an operator notation for general editing operations that
will be used throughout the paper.

A 2D image  can be considered a discrete sample of a continu-
ous image function containing image attributes such as color or
transparency. Implicitly, the discrete image  always represents
the continuous image, and image editing operations are performed
directly on the discrete image. The continuous function can be
computed using a reconstruction operator whenever necessary. 

We describe a general image editing operation as a function of
an original image  and a brush image . The brush image is used
as a general tool to modify the original image. Depending on the
considered operation, it may be interpreted as a paint brush or a
discrete filter, for example. The editing operation involves the fol-
lowing steps: First, we need to specify a parameter mapping 
that aligns the image  with the brush . For example,  can be
defined as the translation that maps the pixel at the current mouse
position to the center of . Next, we have to establish a common
sampling grid for  and , such that there is a one-to-one corre-
spondence between the discrete samples. This requires a resam-
pling operation  that first reconstructs the continuous image
function and then samples this function on the common grid.
Finally, the editing operator  combines the image samples with
the brush samples using the one-to-one correspondence estab-
lished before. We thus obtain the resulting discrete image  as a
concatenation of the operators described above:

. (1)

Our goal is now to generalize the operator framework of
Equation (1) to irregular point-sampled surfaces, as illustrated in
Figure 2.

Formally, we do this by replacing the discrete image  by a
point-based surface . Hence, we represent a 3D object as a set of
irregular samples  of its surface. Since the samples 
are a direct extension of image pixels, we will also call them sur-
fels [Szeliski and Tonnesen 1992, Pfister et al. 2000]. As summa-
rized in Table 1, each surfel stores appearance attributes, including
color, transparency, or material attributes, and shape attributes,
such as position and normal. Let us now consider what effects the
transition from image to surface has on the individual terms of
Equation (1). 

Parameterization .   For photo editing, the parameter map-
ping  is usually specified by a simple, global 2D to 2D affine
mapping, i.e., a combination of translation, scaling, and rotation.
Mapping a manifold surface onto a 2D domain is much more
involved, however. In our system, the user interactively selects
subsets, or patches, of  that are parameterized, as described in
Section 3. In general, such a mapping leads to distortions that can-
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not be avoided completely. In Section 3.2, we present an efficient
method that automatically minimizes these distortions, and at the
same time lets the user intuitively control the mapping.

Resampling .   Images are usually sampled on a regular grid,
hence signal processing methods can be applied directly for resam-
pling. However, the sampling distribution of surfaces is in general
irregular, requiring alternative methods for reconstruction and
sampling. We apply a scattered data approximation approach for
reconstructing a continuous function from the samples, as
described in Section 4. We also present a technique for resampling
our modified surface function onto irregular point clouds in
Section 4.2. A great benefit of our system is that it supports adap-
tive sampling, i.e., works on a dynamic structure. This allows us to
concentrate more samples in regions of high textural or geometric
detail, while smooth parts can be represented by fewer samples.

Editing .   Once the parameterization is established and resam-
pling has been performed, all computations take place on discrete
samples in the 2D parameter domain. Hence we can apply the full
functionality of photo editing systems for texturing and texture fil-
tering. However, since we are dealing with texture and geometry,
the scope of operations is much broader. Additional editing opera-
tors include sculpting, geometry filtering and simplification. As
will be described in Section 5, all of these tools are based on the

same simple interface that specifies a tool by a set of bitmaps and
few additional parameters. For example, a sculpting tool is defined
by a 2D displacement map, an alpha mask and an intrusion depth.

3 PARAMETERIZATION

In our system, the user interactively selects a subset  of the sur-
face , which we call a patch. We compute a parameterization of
the patch  that assigns parameter coordi-
nates  to each point  in  and then apply the editing operation
on the parameterized patch. The user chooses between two types
of interaction schemes to select a patch and compute the parame-
terization: A selection interaction for large patches, described in
Sections 3.1 and 3.2, and a brush interaction for small patches pre-
sented in Section 3.3.

3.1 Selection Interaction

In this interaction scheme, the user triggers each step in the evalua-
tion of Equation (1) separately. First, she marks an arbitrary sur-
face patch using a dedicated selection tool and specifies a set of
feature points. In a next step, she initiates a constrained minimum
distortion parameterization algorithm that uses the feature points,
as described in Section 3.2. Then she typically performs a series of
editing operations on the parameterized patch, such as filtering or
texture mapping. This process is illustrated in Figure 3.

3.2 Minimum Distortion Parameterization

We describe a novel algorithm for computing minimum distortion
parameterizations of point-based objects. Our approach is based on
an objective function, similar to Levy’s method for polygonal
meshes [Levy 2001]. However, we then derive a discrete formula-
tion for surfaces represented by scattered points without requiring
any tesselation. We solve the resulting linear least squares problem
efficiently using a multilevel approach by hierarchical clustering
of points.

Objective Function.   Let us denote a continuous parameterized
surface patch by . The patch is defined by a one-to-one map-
ping  which for each point

 in  represents a point 
on the surface:

. (2)

Figure 2: Overview of the operator framework for point-based sur-
face editing.

Table 1: Attributes of a surface sample .

ATTRIBUTE ABBREVIATION

Position

Normal

Color

Transparency

Material properties

Parameterized patch Φ(S)

Resampled patch Ψ(Φ(S))

Brush Ψ(B)

Modified patch

Ψ

Ω

Original point-based surface

Φ

Modified point-based surface

si

xi

ni

ci

αi

mi

Ψ

Ω

Figure 3: Selection interaction: a) Patch selection and feature
points. b) Texture map with feature points. c) Texture mapping.
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The mapping  describes a parameterization of the surface, with
 its inverse. Our method computes a parameterization

that optimally adapts to the geometry of the surface, i.e., mini-
mizes metric distortions. Additionally, the user is able to specify a
set  of point correspondences between points on the surface 
and points in the parameter domain , , to control the map-
ping. This can be expressed as the following objective function:

, (3)

where , (4)

and . (5)

The first term in (3) represents the fitting error as the sum of the
squared deviations from the user specified data points. The second
term measures the smoothness, or distortion, of the parameteriza-
tion. At each surface point,  integrates the squared curvature
of the parameterization in each radial direction using a local polar
reparameterization . If  is zero, the parameterization
at  is a so called polar geodesic map, which preserves arc length
in each radial direction [O'Neill 1966, Welch and Witkin 1994].
With the parameter , the user additionally controls the relative
weight of the data fitting error and the smoothness constraint. The
desired parameterization  can be obtained by computing the
minimum of the functional (3). We now describe how to set up and
minimize (3) in the discrete case.

Discrete formulation.   Given a set of distinct points  on
the surface, our goal is to assign to each point  a point  in the
parameter domain, such that the objective function is minimized.
In other words, we are solving for the unknown discrete mapping

 and hence we reformulate (3) by substituting the
unknown  for . Moreover, we assume that the parameteriza-
tion is piecewise linear, thus the second derivative of  is not
defined at the points  in general. As an approximation, we dis-
cretize the smoothness criterion by computing at each point  the
squared difference of the first derivatives along a set of normal
sections. This yields the following objective function :

, (6)

where  is the number of points in the patch,  specifies the set
of normal sections, and  and  are unit vectors on the surface
given by the normal section.

Directional Derivatives.   We compute the directional deriva-
tives  and  in (6) as illustrated in
Figure 4: At each point , we collect a set  con-
taining the indices of its  nearest neighbors, typically . For
each neighbor , , we determine the plane  defining the
normal section, which is given by the normal at  and the vec-
tor . We then choose the two points  and ,

, such that the angles between  and
 and the plane  are minimal, while the angles

between  and , and between  and  are bigger than 90
degrees. Otherwise, the normal section crosses the boundary of the

patch, hence we ignore it. This procedure is sufficient to handle
patches with boundaries. Next, we compute the direction  of the
intersection line of the plane  and the plane given by , ,
and  (see Figure 4). 

Assuming a piecewise linear mapping  between  and ,
the directional derivative at  along  is simply

. (7)

Likewise, we compute the derivative along  as described in
[Levy 2001, Levy and Mallet 1998] by assuming a piecewise lin-
ear mapping on the triangle defined by the points . This
leads to a linear expression of the form

, (8)

where the coefficients  are determined by the points
, as presented in detail in [Levy and Mallet 1998].

In contrast to Floater’s shape preserving weights [Floater and
Reimers 2001, Floater 1997], our method can be used as an extrap-
olator, since we do not enforce the coefficients of (8) to be a con-
vex combination. As a consequence, we do not have to specify a
convex boundary. Still, our method has the reproduction property:
If all points lie in a plane and at least three or more points obeying
an affine mapping are given as fitting constraints, the resulting
parameterization will be an affine mapping, too. Moreover, we do
not need to construct a local triangulation at each point as in
[Floater and Reimers 2001] to establish our constraints. Note that
the parameterization is not guaranteed to be bijective. It is rather
left to the user to select a suitable patch and appropriate point cor-
respondences to obtain the desired mapping.

Multigrid Least Squares Solver.   The discrete objective
function of (6) is now a sum of squared linear relations of the gen-
eral form

, (9)

where  is a vector of all unknowns  and the coeffi-
cients  result from (7) and (8). We compute this linear least
squares problem using normal equations and conjugate gradient
methods [Ashby et al. 1990]. The convergence of such iterative
solvers can be further accelerated by efficient multilevel tech-
niques. To this end, we designed a hierarchical strategy as illus-
trated in Figure 5. In a top-down pass, we contract the system by
recursively clustering the unknowns . The clustering is driven
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ṽj

xi xα xβ, ,
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by the spatial proximity of the corresponding surface points ,
and each cluster yields one unknown on the current level. In a bot-
tom-up pass, we solve (9) starting with the coarsest level. The
solution is then prolonged by assigning it as an initial value to the
next higher resolution level. This process is repeated recursively
up to the original resolution.

Figure 3 depicts an example of our parameterization technique.
We first apply the minimum distortion parameterization on a com-
plex surface patch, controlling the mapping by specifying a set of
corresponding feature points. Finally, we perform a texture map-
ping operation.

3.3 Brush Interaction

Here, the user has to select a brush image and an editing operation
first. Then he moves the brush over the surface while continuously
triggering painting events. Each painting event corresponds to one
evaluation of Equation (1), which is performed as follows (see
Figure 6): We center the brush image at the user defined location
on the surface, typically at the current mouse position. We then
align the brush with the tangent plane at this point and orthogo-
nally project the surface points  onto the brush image plane. For
each point having its projection inside the brush image, we assign
the resulting coordinates in the brush image plane as its parameter
coordinates, yielding , where  denotes the orthogo-
nal projection. This process combines the patch selection and
parameterization step using a simple projection. It is therefore suit-
able only for small patches with limited curvature. Finally we
apply the pre-selected editing operation, as illustrated in Figure 6c.

4 RESAMPLING

Given a set of sample points  representing some parameterized,
continuous surface , the resampling operator strives to generate
a new sample  of the same surface. The challenge of
this operation is to minimize information loss while avoiding sam-
pling artifacts. Resampling consists of two separate steps: First,
the reconstruction step should provide a smooth, accurate approxi-
mation of the continuous surface , i.e., of all its shape and
appearance attributes as in Table 1. To avoid aliasing, the actual
sampling step should then properly band-limit  before evaluat-
ing it at the new sampling locations.

4.1 Reconstruction

As described in Section 3, during a typical editing session the user
repeatedly modifies the surface parameterization. Hence a para-
mount objective of the surface reconstruction procedure is that it
can be quickly recomputed under changes of the parameterization.
We therefore apply the following approach consisting of two
stages: first, we perform a local surface fitting step, followed by a
parameter matching step. The local fitting procedure is indepen-
dent of the global parameterization computed in Section 3, hence it
can be performed as a preprocess. The parameter matching step
then uses the global parameterization as a common frame of refer-
ence for the local fits, and blends them to a smooth surface. We
present two alternative techniques to perform the matching step:
For general patches being parameterized using our method from
Section 3.2, we develop an optimization based technique. For the
parameterization by projection approach described in Section 3.3,
we use a more efficient, analogous matching by projection tech-
nique.

Local Surface Fitting.   At each point , we compute a local
approximation of the surface using its  nearest neighbors,
denoted by the index set . This requires a local parameterization
of the neighbors, which we compute by projecting the points ,

 onto tangent plane at . We denote the local parameter
coordinates of the  by . As a local surface approximation, we
compute polynomial fitting functions  using a scheme simi-
lar to [Welch and Witkin 1994]. However, it turned out that for our
purpose a linear fit, i.e., the tangent plane, is sufficient. We then
compute a reconstruction kernel  that will be used to blend
the local fits. It can be interpreted as a weight indicating the confi-
dence that the fitting function accurately represents the surface.
Currently, we use radially symmetric Gaussians centered at .
Their variance  is determined by computing the radius  of the
smallest circle containing the , where . Typically, we
choose  and .

Parameter Matching by Optimization.   This step brings all
local parameterizations into one common frame of reference. For
each local parameterization, we look for a mapping 
such that the local parameter coordinates  of a point  match its
patch parameter coordinates  computed in Section 3.2, hence

, . In our method, we restrict the mappings 
to be affine and compute them by minimizing

, (10)

which is again a linear least squares problem. Since both the local
parameterization and the patch parameterization are smooth in a
neighborhood , local affine mappings  provide a sufficient
approximation and have lead to good results in our system.

Instead of applying this two-step approach with a local fit fol-
lowed by parameter matching, we could also directly compute the
fitting functions in the patch parameter domain. However, our
scheme is more efficient when the global parameterization changes
often. We then have to recompute the parameter matching only,
instead of recomputing the fitting functions and the reconstruction
kernels.

Parameter Matching by Projection.   In Section 3.3, we
compute the parameter coordinates  of a point  as

, where  denotes an orthogonal projection. In the

Figure 5: Multilevel scheme to solve Equation (9).

Figure 6: Brush interaction: a) Aligning the brush tool to the tan-
gent plane. b) Patch selection and parameterization by orthogonal
projection. c) Editing operation, e.g. texture mapping.
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same way, we can then project the fitting functions  to the patch
parameter domain, i.e., , thus .
Inverting this projection amounts to ray-tracing the fitting func-
tions. For linear basis functions, this can be implemented by an
efficient scan conversion.

Blending the Fitting Functions.   After establishing the map-
pings  from the local parameterizations to the patch parameter
domain, we define fitting functions  and reconstruction ker-
nels  in the patch parameter domain as 
and . We now obtain a continuous surface func-
tion  as the weighted sum

. (11)

of fitting functions  and reconstruction kernels .

Our approach is similar in spirit to the construction of point set
surfaces introduced in [Alexa 2001], in that both methods use local
parameterizations and polynomials to approximate the surface.
However, instead of implicitly defining the surface by a projection
operator, we blend the local approximations using a global param-
eterization.

In our system, we use linear fitting functions for the surface
position, and constants for the other surface attributes listed in
Table 1. We illustrate curve reconstruction using constant and lin-
ear fitting functions in Figure 7. In Figure 7a, the constant fitting
functions simply reproduce the data points, whereas in 7b, linear
fitting functions result in straight lines aligned with the tangential
directions at the data points. Clearly, linear functions lead to a
more accurate approximation of the data points (Figure 7c).

4.2 Sampling

The actual sampling includes two aspects: First we need to find a
suitable resampling operator  that specifies the location of the
new samples. Then, we evaluate the surface function according to
the new sampling distribution.

Resampling Operators.   We provide three resampling opera-
tors specifying different resampling distributions, i.e. sets of new
sampling locations  in the patch parameter domain:

Brush Resampling .   In this method, we use the original
surface points as the resampling grid. Hence we have to resample
the brush, yielding a new sample of the brush . Resa-
mpling the surface conceptually results in the same sample

, therefore it is not necessary to perform this opera-
tion. The advantage of this method is that we do not have to insert
any new surface points, and there is no information loss in  due
to resampling.

Surface Resampling .   In many operations, such as tex-
ture mapping, we want to resample the surface at the sampling dis-
tribution of the brush  that represents the texture, avoiding any
loss in texture quality. Hence we generate a new sample of the sur-
face . Since the brush is often sampled on a regular
grid, the evaluation of the surface function can be optimized using
incremental calculations, e.g. for evaluating the Gaussian weight
functions and polynomial fitting functions [Zwicker et al. 2001].

Adaptive Resampling .   If the sampling density of the sur-
face or the brush varies significantly, it occurs that in some areas in
a patch the surface sampling distribution is finer, and in others the
brush sampling density. In this case, both operators  and 
fail to preserve detail of either the brush or the surface. Therefore
we propose a simple adaptive resampling operator  that locally
decides whether to use samples of  or of . The decision is
based on the comparison of the radii of the Gaussian reconstruc-
tion functions in  and , since these radii directly correspond to
the local sampling density.

Band-Limiting the Surface Function.   The goal of this pro-
cess is to avoid aliasing artifacts when evaluating the surface func-
tion at the resampling grid. This can be achieved by properly band-
limiting the continuous function before sampling. In a regular sig-
nal processing framework, band-limiting is performed by convolv-
ing the function with a suitable low-pass filter. Our approach is
inspired by signal processing, approximating this procedure with
irregular sampling distributions, however. Given a resampling
operator  specifying a set of new sampling locations , we
first compute corresponding new reconstruction kernels  as
described in Section 4.1. To sample the surface attributes of a point

, we approximate the convolution of the surface function 
with the reconstruction function  and evaluate it at :

, (12)

where  is also called a resampling filter.
With Gaussian weight functions, the resampling filter can be com-
puted explicitly [Zwicker et al. 2001]. Note that this resampling
procedure is applied to all surface attributes, such as color, posi-
tion, normal, etc.

5 SURFACE EDITING

The resampling method of Section 4 provides samples of the sur-
face  and of the brush  with identi-
cal sampling distribution. We can thus combine the two by
applying an editing operator directly on the discrete coefficients.
Note that both  and  represent all the surfel attributes of

Figure 7: Curve reconstruction: a) Reconstruction with constant
fitting functions. b) Reconstruction with linear fitting functions. c)
Absolute error at the data points. d) The reconstruction functions in
the parameter domain.
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Table 1. Depending on the intended functionality, an editing opera-
tor will then manipulate a subset of these surface attributes, such as
texture or material properties. In the following we will describe
some of the editing operators that we have implemented in our sys-
tem. A prime will denote the manipulated attributes, e.g., 
describes the position of a surfel of the edited surface. Quantities
that stem from the brush  are marked with a bar, e.g.,  is the
color of a brush sample. All other variables are part of the surface
function .

Painting.   Painting operations modify surface attributes by
alpha-blending corresponding surface and brush coefficients. For
example, the surface texture can be altered by applying the paint-
ing operator on the color values, i.e., ,
where  is an alpha value specified in the brush function (see
Figure 9a). Similarly, painting can be applied to other attributes
such as transparency or material properties.

Sculpting.   We have implemented two variations of sculpting
operations that modify the geometry of the surface. The first
option is to apply normal displacements to the surfel positions, i.e.,

, where  is a displacement coefficient given in
the brush function. As illustrated in Figure 9c, this type of editing
operation is particularly suitable for embossing or engraving. On
the other hand, the carving operation is motivated by the way art-
ists work when sculpting with clay or stone. It implements a
“chisel stroke” that removes parts of the surface in the fashion of a
CSG-type intersection. The editing tool is defined with respect to a
reference plane that is specified by the surface normal of the
touching point and an intrusion depth. The new surfel position is
then given by

, (13)

where  is the base point on the reference plane and  the plane
normal (see Figure 8). Carving operations can also be applied to
rough surfaces (see Figure 9d), where normal displacements fail
due to the strong variations of the surface normals.

Filtering.   Filtering is a special kind of editing operation that
modifies the samples of the original model using a user-specified
filter function . First we apply the filter function to  yielding

, then we combine filtered and original attributes
using the brush function for alpha blending. As an example, con-
sider texture filtering, i.e., , where  is
the filtered color value (illustrated in Figure 9b). The filter func-
tion is usually implemented as a discrete convolution. We can
therefore implement arbitrary discrete linear filters by simply
choosing the appropriate kernel grid. Filters can be applied to any
attribute associated with a surfel, e.g. color, normal or distance
from the reference plane for geometric offset filtering. Note that
filtering with large kernels can be implemented efficiently in the
spectral domain, similar to [Pauly and Gross 2001].

6 RESULTS

We have implemented a point-based surface editing system featur-
ing the techniques described in the previous sections. Figure 10
depicts an example of a constrained texture mapping operation
with 10 feature points on a model with 218k points. In Table 2 we
summarize timings of the multilevel solver for different patches
with varying sizes on this object, recorded on a Pentium IV at 2
GHz. The data for the textured patch depicted in Figure 10 is
shown in the third row of Table 2.

After texturing, we additionally embossed a displacement map
on the model as shown in Figure 11a. To produce Figure 11b, we
started with a sphere with 114k points and then applied the texture
from the moon surface shown in Figure 11c. We resampled the
sphere at the resolution of the texture, which is  pixels.
Finally, we applied the displacement map depicted in Figure 11d.
Our system includes a splat renderer similar to [Zwicker et al.
2001]. On a Pentium IV at 2.0 GHz, it renders approximately 500k
antialiased splats per second at an output resolution of 
pixels.

7 CONCLUSIONS AND FUTURE WORK

We presented a versatile system for efficient 3D appearance and
shape editing of point-based models. The key ingredients of our
editor comprise a flexible and powerful point cloud parameteriza-
tion and a dynamic resampling scheme based on a continuous

Figure 8: Normal displacement vs. carving.
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Figure 9: Editing operations: a) Texturing with alpha blending. b)
Texture filtering. c) Normal displacement. d) Carving on a rough
surface.

Table 2: Timings of the multilevel solver: Number of unknowns, 
time to setup the least squares system, time to compute the initial 
solution, time to update when one feature point is modified.

UNKNOWNS SETUP INIT UPDATE

58170 6.9 sec. 2.2 sec. 1.8 sec.

107394 14.9 sec. 8.3 sec. 6.6 sec.

215628 26.3 sec. 12.1 sec. 7.6 sec.

a) b)

c) d)

700 700×

512 512×
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reconstruction of the model surface. Although geometry editing is
limited to normal displacement, we currently support a broad
range of editing operators for efficient 3D content creation. The
achievable effects go well beyond the conventional 2D photo edit-
ing functionality and new, more sophisticated editing operators can
be added very easily. Future work will be devoted to extending our
system towards more general modeling operations. We will also
investigate high quality rendering of parameterized point-based
surfaces using a ray tracing approach.
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Figure 10: Interactive texture mapping (from left to right): Input texture with feature points, original model with corresponding markers,
visualization of the parameter mapping, rendering of the resulting surface.

b)
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d)

Figure 11: Texturing combined with sculpting: a) Normal displacement on the textured face. b) Footprints on the moon, carved with the
displacement maps of d) on a surface textured with the image of c).

a)
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